Муниципальное казенное общеобразовательное учреждение «Георгиевская средняя общеобразовательная школа»

Согласовано:	Принято :	Утверждено:	
Руководитель ШМО ГЦ	На заседании	И.о. директора	
Зинченко Т.П.	педагогического совета	Савушкина М.В.	
Протокол №1 от	протокол №9	Приказ №51/5 от	
«29»		«30»	
082024г.	«30»	082024r.	
	082024г		

Рабочая программа курса внеурочной деятельности «Решение задач по физике» 10 класс, среднее общее образование на 2024-2025учебный год (факультативный курс)

Разработана: Перевозчиковым Н.И. учителем физики Настоящая программа по внеурочной деятельности рассчитана на преподавание в объеме 34 часа (1 час в неделю). Цель данного курса углубить и систематизировать знания учащихся 10 классов по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Цели внеурочной деятельности:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи внеурочной деятельности:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Планируемые результаты

Личностные:

- Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общения, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- Самостоятельность в приобретении новых знаний и практических умений;
- Мотивация образовательной деятельности школьников на основе личностноориентированного подхода;
- Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные:

- Овладевать навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановка целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- Понимать различия между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладевать универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- Формировать умения воспринимать, перерабатывать и представлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- Приобретать опыт самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

- Развивать монологическую и диалогическую речь, уметь выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на его точку зрения, признавать право другого человека на иное мнение;
- Осваивать приемы действий в нестандартных ситуациях, овладевать эвристическими методами решения проблем;
- Формировать умения работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные:

- Формировать представления о закономерной связи и познания природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; о научном мировоззрении как результате изучения основ строения материи и фундаментальных законов физики;
- Формировать первоначальные представления о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усваивать основные идеи механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладевать понятийным аппаратом и символическим языком физики;
- Приобретать опыт применения научных методов познания, наблюдения физических явлений, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимать неизбежность погрешности любых измерений;
- Осознавать необходимость применения достижений физики и технологий для рационального природопользования;
- Овладевать основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- Развивать умение планировать в повседневной жизни свои действия с применением полученных знаний механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- Формировать представления о нерациональном использовании природных ресурсов и энергии, о загрязнении окружающей среды как следствии несовершенства машин и механизмов.

Познавательные: в предлагаемом курсе физики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, объяснений физических явлений, поиска решения задач у учеников формируются и развиваются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать разнообразные явления, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации, используя при решении самых разных физических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с физическим содержанием, требующие различного уровня логического мышления.

Регулятивные: в процессе решения задачи ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат.

Коммуникативные: в процессе решения задач осуществляется знакомство с физическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием физических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного

действия, обосновывают этапы решения учебной задачи, учатся работать в парах, группах, фронтально.

Содержание учебного факультативного курса «Физика»

Физическая задача. Классификация задач

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов. Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

Правила и приемы решения физических задач

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения. Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т. д.

Механика

Основные законы и понятия кинематики. Решение расчетных и графических задач на равномерное движение. Математическая запись уравнения движения. График движения. График скорости. Решение задач на равноускоренное движение. Движение по окружности. Решение задач. Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Задачи на определение характеристик равновесия физических систем. Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета. составление и решение по интересам различных сюжетных занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием. Экскурсии с целью отбора данных для составления задач. Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов, сохранения. Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии. Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад. Конструкторские задачи и задачи на проекты: модель акселерометра, модель маятника Фуко, модель кронштейна, модель пушки с противооткатным устройством, проекты самодвижущихся тележек, проекты устройств для наблюдения невесомости, модель автоколебательной системы.

Основы МКТ и термодинамики

Качественные задачи на основные положения и основное уравнение молекулярнокинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления,

избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха. Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости. Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические экспериментальные задачи, задачи бытового содержания. Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели. Экскурсия с целью сбора данных для составления задач. Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

Электрическое и магнитное поля

Характеристика решения задач раздела: общее и разное, примеры и приемы решения. Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов «а описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС. Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи. Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика». Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и Лоренца. магнитный поток. сила Ампера сила Решение экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Электромагнитные колебания и волны

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор. Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения. Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения. Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов. Экскурсия с целью сбора данных для составления задач. Конструкторские задачи и задачи на проекты: плоский конденсатор заданной емкости, генераторы различных колебаний, прибор для измерения освещенности, модель передачи электроэнергии и др.

Календарно – тематическое планирование

Nº	Дата	Тема занятия
1	01.09	Физическая задача. Классификация задач. Правила и приемы решения физических задач.
2	08.09	Примеры задач всех видов.
3	15.09	Правила и приёмы решения физических задач
4	22.09	Типичные недостатки при решении и оформлении решения физической задачи.
5	29.09	Основные законы и понятия кинематики.
6	06.10	Решение расчетных и графических задач на равномерное движение.
7	13.10	Графические задачи
8	20.10	Решение задач на равноускоренное движение.
9	27.10	Движение по окружности. Решение задач.
10	10.11	Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления.
11	17.11	Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления.
12	24.11	Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.
13	01.12	Решение задач на условие равновесия.
14	08.12	Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.
15	15.12	Тест по теме: Движение материальной точки.
16	22.12	Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов сохранения.

17	12.01	Решение задач средствами кинематики, динамики, с помощью законов сохранения
18	19.01	Задачи на закон сохранения импульса и реактивное движение.
19	26.01	Задачи на определение работы и мощности.
20	02.02	Решение задач с помощью законов сохранения
21	09.02	Решение задач с помощью законов сохранения
22	16.02	Механические колебания. Превращение энергии при колебаниях.
23	02.03	Колебательные системы.
24	09.03	Тест по теме: Законы сохранения.
25	16.03	Качественные задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ)
26	30.03	Задачи на основные положения и основное уравнение молекулярнокинетической теории (МКТ).
27	06.04	Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.
28	13.04	Задачи на свойства паров: использование уравнения Менделеева— Клапейрона, характеристика критического состояния.
29	20.04	Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.
30	27.04	Качественные и количественные задачи. Графические и экспериментальные задачи, задачи бытового содержания.
31	04.05	Задачи на инструментальные, абсолютные и относительные погрешности.
32	11.05	Комбинированные задачи на первый закон термодинамики.
33	18.05	Графические задачи
34	25.05	Комбинированные задачи части

Литература для учителя

- 1. Орлов В. Л., Сауров Ю. А. «Методы решения физических задач» («Программы элективных курсов. Физика. 9-11 классы. Профильное обучение»). Составитель В. А. Коровин. Москва: Дрофа, 2005 г.
- 2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2007 г. (мастерская учителя).
- 3. Каменецкий С. Е., Орехов В. П. «Методика решения задач по физике в средней школе», М., Просвещение, 1987 г.
- 4. Мясников С. П., Осанова Т. Н. «Пособие по физике», М., Высшая школа, 1988 г.
- 5. Фомина М. В. «Решебник задач по физике», М., Мир, 2008 г.
- 6. Марон В. Е., Городецкий Д. Н., Марон А. Е., Марон Е. А. «Физика. Законы. Формулы. Алгоритмы» (справочное пособие), СПб, Специальная литература, 1997 г.
- 7. Ромашевич А. И. «Физика. Механика. 10 класс. Учимся решать задачи», М., Дрофа, $2007 \, \Gamma$.
- 8. Рябоволов Г. И. «Сборник тематических работ по физике», М., Просвещение, 1985 г.
- 9. Балаш В. А. «Задачи по физике и методы их решения», М., просвещение, 1983 г.
- 10. Орлов В. А., Никифоров Г. Г. «Единый государственный экзамен. Контрольные измерительные материалы. Физика», М., Просвещение, 2004 г.
- 11. Орлов В. А., Никифоров Г. Г. «Единый государственный экзамен: Методические рекомендации. Физика», М., Просвещение, 2004 г.
- 12. Орлов В. Л., Ханнанов Н. К., Никифоров Г. Г. «Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика», М., Интеллект-Центр, 2004 г.
- 13. Тульчинский М. Е. «Качественные задачи по физике», М., Просвещение, 1972 г.
- 14. Монастырский Л. М., Богатин А. С. «Физика. ЕГЭ 2009. Тематические тесты», Р-н-Д, Легион, 2008 г.
- 15. ЕГЭ. Физика : типовые экзаменационные варианты : 30 вариантов / под ред. М. Ю. Демидовой. М.: Издательство «Национальное образование», 2018. 384 с.

Литература для учащихся

- 1. Трофимова Т. И. «Физика для школьников и абитуриентов. Теория. Решение задач. Лексикон», М., Образование, 2003 г.
- 2. Ромашевич А. И. «Физика. Механика. Учимся решать задачи. 10 класс», М., Дрофа, $2007~\Gamma$.
- 3. Минько Н. В. «Физика: полный курс. 7-11 классы. Мультимедийный репетитор (+CD)», СПб, 2009 г.
- 4. Балаш В. А. «Задачи по физике и методы их решения», М., Просвещение, 1983 г.
- 5. Гольдфарб И. И. «Сборник вопросов и задач по физике», М., Высшая школа, 1973 г.
- 6. Кабардин О. Ф., Орлов В. А., Зильберман А. Р. «Задачи по физике», М, Дрофа, 2002 г.
- 7. Козел С. М., Коровин В. А., Орлов В. А. и др. «Физика. 10—11 кл.: Сборник задач с ответами и решениями», М., Мнемозина, 2004 г.
- 8. Малинин А. Н. «Сборник вопросов и задач по физике. 10—11 классы», М., Просвещение, $2002 \, \Gamma$.
- 9. Меледин Г. В. «Физика в задачах: экзаменационные задачи с решениями», М., Наука, 1985 г.
- 10. Черноуцан А. И. «Физика. Задачи с ответами и решениями», М., Высшая школа, 2003 г.
- 11. Рымкевич А. Н. «Физика. Задачник. 10-11 классы» (пособие для общеобразовательных учебных заведений), М., Дрофа, 2003 г.
- 12. Степанова Γ . Н. «Сборник задач по физике: для 10-11 классов общеобразовательных учреждений», М., просвещение, 2000 Γ .
- 13. ЕГЭ. Физика: типовые экзаменационные варианты: 30 вариантов / под ред. М. Ю.
- Демидовой. М.: Издательство «Национальное образование», 2018. 384 с.